Toward noninvasive monitoring of ongoing electrical activity of human uterus and fetal heart and brain
نویسندگان
چکیده
OBJECTIVE To evaluate whether a full-coverage fetal-maternal scanner can noninvasively monitor ongoing electrophysiological activity of maternal and fetal organs. METHODS A simulation study was carried out for a scanner with an array of magnetic field sensors placed all around the torso from the chest to the hip within a horizontal magnetic shielding enclosure. The magnetic fields from internal organs and an external noise source were computed for a pregnant woman with a 35-week old fetus. Signal processing methods were used to reject the external and internal interferences, to visualize uterine activity, and to detect activity of fetal heart and brain. RESULTS External interference was reduced by a factor of 1000, sufficient for detecting signals from internal organs when combined with passive and active shielding. The scanner rejects internal interferences better than partial-coverage arrays. It can be used to estimate currents around the uterus. It clearly detects spontaneous activity from the fetal heart and brain without averaging and weaker evoked brain activity at all fetal head positions after averaging. CONCLUSION The simulated device will be able to monitor the ongoing activity of the fetal and maternal organs. SIGNIFICANCE This type of scanner may become a novel tool in fetal medicine.
منابع مشابه
The demonstration of human fetal brain activity in utero using function magnetic resonance imaging
Introduction This study presents the first direct investigation of fetal brain activity in utero using fMRI. Human fetal brain activity is usually studied indirectly by monitoring the changes in fetal heart rate and associated fetal movements, although recently fetal MEG has been attempted’. fMRI offers a safe and relatively robust method of monitoring fetal brain activity. This has major impli...
متن کاملNeural Monitoring With CMOS Image Sensors
Implantable image sensors have several biomedical applications due to their miniature size, light weight, and low power consumption achieved through sub-micron standard CMOS (Complementary Metal Oxide Semiconductor) technologies. The main applications are in specific cell labeling, neural activity detection, and biomedical imaging. In this paper the recent research studies on implantable CMOS i...
متن کاملNovel window on early human neurodevelopment via fetal exosomes in maternal blood.
Adverse in utero exposures can disrupt fetal brain development, deplete subpopulations of neurons and inhibit formation of normal synaptic connections. A major roadblock to unraveling the precise mechanisms and timing of human neurodevelopmental derangement is the almost complete absence of sensitive noninvasive assessments. We present novel methods for isolating fetal neuronal exosomes from ma...
متن کاملMethodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human
Transcranial current stimulation (TCS) is a neuromodulation method in which the patient is exposed to a mild electric current (direct or alternating) at 1-2 mA, resulting in an increase or a decrease in the brain excitability. This modi.cation in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might also facilitate the treatments ...
متن کاملP 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury
Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...
متن کامل